skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonilla_Franco, V Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Marysvale volcanic field in southwestern Utah hosts three large-volume gravity slides: the Sevier (SGS), the Markagunt (MGS), and the Black Mountains (BGS). The gravity slides are composed of lahar deposits, lava flows, and ash-flow tuffs erupted from former stratovolcanoes and other vents during the Oligocene and Miocene. The ash-flow tuffs are prime targets for dating to constrain the age of the gravity slides because some ash-flow tuffs are deformed within the slides, whereas others are undeformed and cap the slides. Furthermore, the gravity slides produced pseudotachylyte during slide motion, a direct indicator for the timing of each slide. This work provides new 40Ar/39Ar dates for several ash-flow tuffs and pseudotachylyte for the SGS, along with U/Pb zircon dates for one deformed tuff and alluvium near the slide plane. Results show that the slide was emplaced at 25.25 ± 0.05 Ma and was immediately followed by the eruption of the Antimony Tuff at 25.19 ± 0.02 Ma. The model presented here suggests that the intrusion of magma related to the Antimony Tuff acted as a triggering mechanism for the slide and that slide movement itself led to decompression melting and eruption of the Antimony Tuff. This sequence of events occurred on a geologically rapid timescale and may have been virtually instantaneous. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026